
October 2008

Pion Spectra in the Production of Resonances by Neutrinos

E.A. Paschos1, ∗ and Subhendu Rakshit2, †

1Institut für Physik,Technische Universität Dortmund, D-44221 Dortmund, Germany

2Department of High Energy Physics,

Tata Institute of Fundamental Research,

Homi Bhabha Road, Mumbai- 400 005. India.

Abstract
A method is presented using helicity cross sections for calculating neutrino-nucleon interactions.

The formalism is applied in the calculation of the pion spectra produced by νµ and ντ beams. The
masses of the charged leptons are kept throughout the calculations. Cross sections are presented
in numerous figures where the contributions of the significant form factors are also shown. The
article describes the steps of the calculation and gives details so that it can be reproduced and
adapted to the kinematic conditions of the experiments.
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I. INTRODUCTION

Neutrino production of resonances is attracting a lot of attention because differential

cross sections will be measured in a new generation of experiments which will try to verify

the functional form of the cross sections i.e. the number and the Q2 dependence of form

factors(FF). They will also be used as an input to study properties of neutrinos in oscillation

experiments. The dominant signal at low neutrino energies will be the ∆-resonance. Many

of the completed experiments detected the energy and the angle of the produced muon

which motivated theoretical authors to integrate over the phase space of the decay products,

thus presenting cross sections dσ
dQ2 ,

dσ
dW and the integrated cross section. The comparisons

of the calculated cross sections (differential or integrated) are consistent with the data,

but we must confess the error bars are large so that there is a significant spread on the

experimental points.

The accuracy will improve in the new experiments and explicit distributions on the

energy spectrum of the pions produced in the decays will become available. This motivates

us to calculate the pion spectrum from the diagram in Fig. 1 by keeping the ∆-propagator

and without integrating over the whole phase space of the pion. We shall present

the calculation in detail so that the interested reader can reproduce and use our results.

We will also make available a code for our calculation which can be used by experimentalists.

The method that we adopt decomposes the leptonic tensor into helicity components

and uses helicity cross sections for the scattering of the W± or Z0 bosons on the nucleons.

This method has been found to be useful [8, 9] and was adopted recently in the coherent

pion production by neutrinos [10]. This way the calculation, whose algebra is long and

tedious, simplifies. We decided to present results for free protons and neutrons in order

to show their main features and separate them from nuclear target effects. We also take

the opportunity to mention and correct a mistake in the pion spectrum that appears in an

earlier article on which one of us (EAP) was a co-author.

In addition to describing the formalism we use it for the calculation of the differential

and integrated cross sections. We calculate the energy spectra of produced pions by νµ

and ντ beams. We keep the masses of the charged leptons throughout the calculations or

set them equal to zero in order to see the changes brought about in the spectra. We also

show in many figures the contributions of the important form factors and their interferences

explicitly. Section II describes the method and includes detailed formulas for the cross

sections. The functional dependence of the form factors are included in section III, where

they are used in order to calculate the results in figures 2-10. A summary of the results and

of the improvements that have taken place over the past few years are included in the last

section.
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II. THE METHOD

The process we consider is in general

ν("k) N("p) → µ−("k′)R("p∆) → µ−("k′) π(pπ) N(p′) (2.1)

with R being a resonance with spin 3/2. It is convenient to use variables in the rest frame

ν$ q

W

N N

π

R

k

p p′

pπ

p∆

k′

$

FIG. 1: Diagram of the process

of the nucleon

q = k − k′, Q2 = −q2, W 2 = p2
∆, ν = E − E ′ (2.2)

inspired from the kinematics of deep inelastic scattering. The leptonic tensor is

Lµν = 4
[
kµk′

ν + kνk
′
µ + gµνk.k′ − iεµναβkαk′β

]
=

∑

h,h′
Lhh′εµ∗

h′ εν
h (2.3)

which can be decomposed in terms of the polarizations of the exchanged current. When we

keep the mass of the muon or tau lepton, there are polarizations for the spin-1 and zero

states. In the laboratory frame we introduce the basis vectors

εµ
R =

1√
2

(0, 1, i, 0)

εµ
L =

1√
2

(0, 1,−i, 0)

εµ
0 =

1√
Q2

(|"q|, 0, 0, q0) (2.4)

for helicities and the scalar component

εµ
' =

qµ

√
Q2

. (2.5)
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We warn the reader that various definitions occur in the published articles which differ

from each other. For instance, the above notation is slightly different from than in ref. [10].

Numerous articles in the early studies of resonance production and recently [11, 12] define

a set of polarizations in the rest frame of the resonance because it simplifies calculations.

The above set is convenient with the first three polarizations being present even when the

leptons are massless and the longitudinal component appearing for massive leptons. It is

also a complete and orthonormal set of polarizations.

The coefficients Lh′h are obtained by inverting Eq. 2.3

Lh′h = Lµνε
µ∗
h′ εν

h. (2.6)

When we average over the azimuthal angles of the produced hadrons, only the diagonal

elements of the density matrix, as well as the $0 interference term survive in the cross

section. They were calculated in ref. [10] and we give them again for completion:

LRR =
Q2

|"q|2 (2E − ν + |"q|)2 −
m2

µ

|"q|2
[
2ν(2E − ν + |"q|) + m2

µ

]

LLL =
Q2

|"q|2
(2E − ν − |"q|)2 −

m2
µ

|"q|2
[
2ν(2E − ν − |"q|) + m2

µ

]

L00 =
2 [Q2(2E − ν) − νm2

µ]2

Q2|"q|2 − 2(Q2 + m2
µ) (2.7)

L'' = 2m2
µ

(
m2

µ

Q2
+ 1

)

L'0 =
2m2

µ[Q2(2E − ν) − νm2
µ]

Q2|"q|

All matrix elements are positive in the physical region, which becomes evident when the

kinematic condition Q2
min = m2

µ
ν

E−ν is taken into account. For the propagator of the spin-

3/2 resonance we introduce the Rarita-Schwinger propagator in free space [13]

Gµν(p∆) =
p/∆ + M∆

p2
∆ − M2

∆ + iM∆Γ∆

[

gµν −
1

3
γµγν −

2

3

1

M2
∆

p∆µp∆ν +
1

3

1

M∆
(p∆µγν − p∆νγµ)

]

≡ p/∆ + M∆

p2
∆ − M2

∆ + iM∆Γ∆
G′

µν (2.8)

which is sufficient for the present work. The mass of M∆ = 1232MeV and the width

Γ∆ = 120MeV will be taken as constants. But in some articles it is a function of the

invariant mass Γ∆ = Γ∆0

(
pπ(W )

pπ(M∆)

)3
with pπ(W ) = 1

2M∆

√
(W 2 − M2

N − m2
π)2 − 4M2

Nm2
π.

Several authors studied the modifications of the propagator in nuclear matter, which will

be useful when we consider nuclear corrections.
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The matrix element for the entire process includes the coupling of the Wp∆-vertex given

in terms of form factors and the πp∆ coupling ig∆pµ
π. The matrix element is

Mh =
√

3 ig∆pµ
π ū(p′)

[
Gµν(p + q) dνλ +

1

3
Gνµ(p − pπ) dλν

]
u(p) ελ(q, h) (2.9)

For our process there are two propagators; one in the s-channel for ∆++, as shown in figure

1, and one in the u-channel for ∆0. The arguments of the propagator are (p + q)2 and

(p − pπ)2, respectively. The argument of the polarizaion is qµ and h denotes helicity. In

this preprint we include, for the calculation and the curves, only the s-channel pole which

resonates. When we submit the article for publication both terms will be included.

The coupling at the Wp∆-vertex are included in dλν which will be discussed below. The

πp∆ coupling is taken from Appendix A1 of ref. [14]: g∆ = 15.3GeV−1. The factor
√

3

originates from the isospin relation

〈∆++|V +
µ |p〉 =

√
3〈∆+|V 3

µ |p〉 (2.10)

where the right hand side is related to the electromagnetic form factor, whose numerical

value was determined in early experiments and are used in many articles. Electroproduction

data have been used as an input for neutrino reactions1 and this convention still survives.

The factor 1/3 in front of the u-channel pole comes from the Clebsch-Gordan coefficients.

The Wp∆-vertex contains vector and axial form factor included in the function

dνλ = gνλ

[
CV

3

MN
q/ +

CV
4

M2
N

p∆.q +
CV

5

M2
N

p.q + CV
6

]

γ5 − qν

[
CV

3

MN
γλ +

CV
4

M2
N

pλ
∆ +

CV
5

M2
N

pλ

]

γ5

+gνλCA
5 + qνqλ CA

6

M2
N

(2.11)

The vector form factors were determined [14] using electroproduction data. Among the axial

form factor the most important are CA
5 (q2) and CA

6 (q2) and for this reason we omitted the

other two axial form factors. All form factors will be given explicitly in the next section.

The square of the matrix element for the s-channel pole is

Mh′∗Mh =
3

2

g2
∆

(p2
∆ − M2

∆) + M2
∆Γ

2
∆

Tr[ pµ
π(p/∆ + M∆)G′

µνd
νλελ(h)(p/ + MN )

ε∗λ′(h′)dν′λ′
G′

µ′ν′(p/∆ + M∆)pµ′

π (p/′ + MN)](2.12)

The factor 1/2 comes from averaging over initial spins of the target. The helicity cross

sections and interference terms for the scattering of the current on a proton target are

1 To our knowledge the factor
√

3 was introduced first by Schreiner and von Hippel and has become tradi-
tional to keep it in recent calculations.
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defined as
dσh′h

dEπ
(ν, Q2) =

1

32πνMN |"p∆|
Mh′∗Mh (2.13)

We now have all the ingredients for calculating helicity cross sections for the processes

W+p → R++ → π+p. The calculation is straight forward since it involves a two-body phase

space and a trace. It is long because of the many γ-matrices occurring in the propagator

and the Wp∆-vertex. The trace calculation was done using FEYNCALC [15].

Finally we can include the lepton variables and present the triple differential cross section

dσ

dEπ dQ2 dν
=

G2

4π2

ν

4E2
|Vud|2

[

L00
dσS

dEπ
+ LLL

dσL

dEπ
+ LRR

dσR

dEπ
+ L''

dσ'

dEπ
+ 2 L'0

dσ'0

dEπ

]

(2.14)

This formula includes the muon mass contained in the Lh′h functions. In the limit mµ = 0

it reduces to the known result [8]. We note that the formalism simplifies the calculations

because the leptonic part was incorporated as an overall factor. We also note that there is

only one interference term dσ"0

dEπ
because the other interference terms vanish when we average

over the azimuthal angle of the produced hadrons.

III. NUMERICAL ESTIMATES

Besides the form factors we have now all the ingredients for calculating the pion spectrum.

The vector form factors have been studied in earlier paper determining their Q2-dependence

from electroproduction data. It has been established that they are modified dipoles

CV
3 (Q2) =

CV
3 (0)

(1 + Q2/M2
V )2

1

1 + Q2/(4 M2
V )

(3.1)

with CV
3 (Q2 = 0) = 1.95 and MV = 0.84GeV. The dominance of the magnetic dipole gives

the relation

CV
4 (Q2) = −CV

3 (Q2)
MN

W
, CV

5 = 0. (3.2)

The other two terms CV
5 = CV

6 were set to zero. These form factors were determined

by electroproduction data where it was shown that they reproduce the measured helicity

amplitudes [14].

The axial couplings were obtained from the decay rate of the ∆-resonance and the repro-

duction of neutrino data

CA
5 (Q2) =

CA
5 (0)

(1 + Q2/M2
A)2

1

1 + Q2/(3 M2
A)

(3.3)

with CA
5 (Q2 = 0) = 1.2 and MA = 1.05GeV. PCAC gave us

CA
6 (Q2) = CA

5 (Q2)
M2

N

Q2 + m2
π

. (3.4)
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CA
6 (Q2) is the pseudoscalar form factor with its contribution to the cross section being

proportional to the square of the lepton mass.

The triple differential cross section dσ
dEπ dQ2 dW shown in figure 2 for neutrino energy of

1.0GeV, Eπ = 300MeV, Q2 = 0.2, 0.5 and 0.8GeV2. The curves show a ∆-peak which is

a sensitive function of Q2. This is expected since for large values of Q2 there is the large

decrease of the form factors. Integrating over W one obtains the double differential cross

section of figure 3. Again the cross section decrease with increasing Eπ because the process

runs out of phase space.

Finally more interesting is the dependence on the pion energy when all other variables

are integrated. Figure 4 shows the contribution of the important form factors. the term CA
5

dominates with the next contribution coming from CV
3 . The interference between CV

3 and

CV
4 is destructive. The interference between vector and axial form factors is constructive

for neutrinos and destructive for anti-neutrinos. In figure 5 we set the muon mass equal to

zero in order to see the effect of neglecting the mass. We repeat the calculations for higher

neutrino energies Eν = 1, 2, and 5 GeV shown in figures 6-8.

The mass of the charged lepton influences the pion spectra shown in Figures 4 and 5.

Mass effects are much more for ντ beams, where the threshold effect is dominant. In Fig. 9

we show the pion spectrum for Eντ = 5GeV.

A new feature is the change in the significance of the various form factors. The induced

pseudoscalar form factor CA
6 is more important relative to CA

5 . The integrated cross-section

is smaller because it reaches its asymptotic value at a much higher energy. In Fig. 10 we

show the integrated cross-section as a function of Eντ . In all the figures, we have included

the spectra for anti-neutrinos, which are obtained by changing the sign of the vector ⊗ axial

interference terms. In closing, we remark that the pion spectra show relevant new features,

and will be important in deciphering the importance and the functional dependence of the

form factors.

For comparison with other articles one must keep in mind that we did not include

nuclear effects from the target. We decided to use protons or neutrons as free targets in

order to study the significance of the various form factors. We may include nuclear target

effects later on.

Several articles calculated and presented the pion spectrum and we comment on them.

An early article [2], where one of us is a co-author, presented in figures 8-16 pion energy

spectra with a different shape because the phase space was treated incorrectly. The

discrepancy was noticed and corrected in figures 3 and 4 of ref. [6]. The same discrepancy
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has been pointed out when the spectrum was calculated in [7]. Between the previous

two articles, mentioned above, and the present article there is a difference in the method

of calculation. The earlier articles calculated the production of the delta resonance and

then folded its decay into a pion and a nucleon. This method however requires knowledge

of the density matrix elements as described in Equs (1.3) and (1.4) of ref. [16], because

resonances in various polarization states produce pions with different energies. In the

present article we calculate the entire process with the delta resonance in the intermediate

state. The same procedure is advocated in a recent article [5]. Thus the pion energy spec-

trum on a Hydrogen target is a rather interesting quantity being sensitive to the form factors.

IV. SUMMARY

Neutrino interactions are reaching an age of theoretical maturity and will come to be

compared with the new generation of experiments. For this reason we investigated the

neutrino cross-sections in the energy range of the delta-resonance. To this end we have

rewritten the neutrino-nucleon cross-section in terms of helicity of cross-sections of the W±

on nucleons. For the sake of brevity, we have not included neutral current reactions, which

will be presented in the future. Our plan is to present these results in a code and explicit

publications.

Besides the formalism, we have made the following improvements:

1. We included the charged lepton mass. The reader who wishes to see effects originating

form the mass can set them equal to zero in Eqs. 2.7 and include them in the phase

space of the two-body cross-section given in Eq. 2.13. Such a comparison was presented

in Figs. 4 and 5.

2. We use a running width for the resonance as described after Eq. 2.13. This was also

included in ref. [14].

3. We study the significance of the pseudo-scalar form factor CA
6 for muon and tau

neutrino-induced reactions. We have also presented contributions from the various

form factors.

With this article, we hope to clarify several questions presented by colleagues who are

planning and carrying out the experiments. There are several other quantities that need

to be calculated, and for just this reason, we have developed a flexible formulation which

can be adapted to new situations which may arise. Finally, as previously mentioned, we are

preparing a CODE which will cover new demands that may come up in the future.
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FIG. 2: Triple differential cross section for a 1 GeV νµ interacting with a proton for different Q2.
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FIG. 5: Same as Fig. 4 but with outgoing muon mass neglected. In this limit CA
6 does not contribute.

These cross sections are a bit enhanced compared to Fig. 4 due to more phase space in this limit.

13



 0

 5e-39

 1e-38

 1.5e-38

 2e-38

 0  100  200  300  400  500  600  700  800  900

d!
/d

E
"
 [c

m
2 /G

eV
]

E" [MeV]

E#! = 1 GeV

CA
5

CA
5 & CA

6

CV
3

CV
3 & CV

4

#!

#!
-

FIG. 6: Pion energy spectrum for an incoming νµ of energy 1 GeV. Notations are similar to Fig. 4.
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FIG. 7: Pion energy spectrum for an incoming νµ of energy 2 GeV. Notations are similar to Fig. 4.
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FIG. 8: Pion energy spectrum for an incoming νµ of energy 5 GeV. Notations are similar to Fig. 4.
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FIG. 9: Pion energy spectrum for an incoming ντ of energy 5 GeV. Notations are similar to Fig. 4.
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